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ABSTRACT

Sintered B-tricalcium phosphate (B-TCP, B-Ca3(POs),) and Zn-doped (600, 4100, and
10100 ppm) B-TCP samples were prepared by using an aqueous chemical synthesis technique,
followed by the calcination of pressed powders at 1000°C in air. Precursor powders of the
synthesis process were Ca-deficient nanoapatites (i.e., Ca/P molar ratio varying from 1.49 to
1.51) with rod-like but agglomerated particles of 50 nm length and 20 nm thickness. In vitro
culture tests performed by mouse osteoblast-like cells showed that $-TCP doped with 4100 ppm
Zn had the highest cell viability and alkaline phosphatase (ALP) activity values over a range of 0
to 1 wt% Zn. The sample surface roughness, measured by non-contact profilometry, was also
found to have an effect on the Live/Dead cell counts, and the highest cell viability recorded in
this study corresponded to the surfaces with the least roughness.

INTRODUCTION

The most commonly used synthetic bone implant materials are Ca-hydroxyapatite (HA,

Cao(PO4)s(OH),) and B-tricalcium phosphate (B-TCP, B-Cas(POy),).' These materials possess
exceptionally good tissue compatibility and bond directly to bone without an intermediary layer
of fibrous tissue.” Calcium phosphate (CaP)-based synthetic implants provide, in vivo, calcium
and phosphate ions to the implant-host bone interface as soon as their resorption starts.? The
inorganic part of bone is made up of a defective and rather complex substance (also doped with
several mono- or divalent cations (Na, K, Mg, Zn, Fe, etc.) as well as with carbonate ions) with a
generic formula of Cag3(PO4)s3(HPQy, CO3);7(OH, CO;3)o3.> Divalent cations, which partially
substitute the calcium and phosphate sites in these implant structures, seem to play an important
role in the competition between HA and B-TCP.* However, - TCP has an advantage over HA in
the sense that B-TCP dissolves and resorbs faster than HA. It was shown that the dissolution rate
of B-TCP (i.¢., 1.26x10™ mol/m™ min™) in an aqueous solution at a pH of about 6 was about 89
times greater than that of carbonated apatite (1.42x10°° mol/m™ min).> As an implant the higher
dissolution rate of B-TCP may result in premature loss of mechanical strength. It was shown that
when the TCP structure was stabilized, the dissolution rate will decrease,®’ providing better
mechanical properties. This stability in structure can be achieved by substituting the larger Ca®*
(0.099 nm) ions with smaller divalent cations, such as Zn>* (0.074 nm)™® or Mg>* (0.072 nm)
ions.” It was reported that the solubility activity product (Ksp) of single phase pure B-TCP is
2.51x10"° *'° and that of Zn-doped TCP decreases by 52-92% in increasing the Zn-level up to
630 ppm.°® Stabilization of the B-TCP structure was quite evident from the fact that there was an
increase in the transformation temperature of Zn-doped B-TCP to a-TCP.!! As a result, Zn-doped
B-TCP can be sintered at higher temperatures without its conversion to a-TCP.

Zinc is an important growth factor, as deficiency of zinc can adversely affect growth in
many animal species and in humans.'? The deficiency of zinc can also cause severe disorders as
poor appetite, mental lethargy, delayed wound healing, growth retardation, delayed puberty in
adolescents, and rough skin.'* The supplementation of zinc can help reduce the susceptibility to
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diseases like diarrhea, pneumonia, respiratory infections, and poor immune system.” Zinc is
essential for maintaining biologically good health in humans. In humans, zinc is present as a
trace element in the bones, teeth, hair, skin, testes, liver, and muscles. Zinc also promotes
synthesis of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Zinc has a stimulatory
effect on bone formation and mineralization, both in vivo and in vitro.'*"'® The presence of zinc
is known to increase the protein synthesis,'”'? to activate the aminoacyl-tRNA synthase,'*** to
enhance albumin synt:hesis,18 and to increase ALP activity.ls It should be noted here that a
protein called osterix (i.e., zinc finger-containing transcription factor) is needed for osteoblast
differentiation.?’ While it was shown that the presence of zinc led to an increase in osteoblast
activity, it was also shown that zinc’s deficiency led to bone growth retardation,”**
postmenopausal osteoporosis,>* and programmed cell apoptosis (in mice).”” However, there
comes a limitation in the amount of zinc which can increase the activity of osteoblast cells, as
high concentrations of zinc may also have a cytotoxic effect on cells.* Therefore, in this study
we placed the significance on finding the appropriate zinc concentration needed for enhanced
osteoblast cell proliferation, response and growth.

The synthesis of zinc containing calcium phosphates has been initialized by Bigi er alt
and Fuierer et al. ¥’ Bigi er al. synthesized Zn-doped B-TCP by physically mixing the in-house
synthesized single phase B-TCP with o-Zn3(POy),, followed by calcining the mixture at 1000°C
for 15 hours.? In the aforementioned studies no ICP data were reported which would have been
of great help in determining any vaporization of Zn occurring while heating the samples at such
high temperatures for prolonged times. Another important contribution to the synthesis of Zn-
doped B-TCP was made by LeGeros ef al.,”** where the precursor powders were formed by wet
chemical methods. However, until now the research group of Ito ez al%%%* have been the most
important contributor to the synthesis of Zn-doped B-TCP (and other calcium phosphates), as
well as their in vitro and in vivo evaluation. Ito er al. have shown the positive stimulatory effects
of Zn on in vivo bone formation. The most preferred route of the Ito group in synthesizing the
Zn-doped pB-TCP was a two-step procedure.3 Briefly, they first prepared a 10 mol% Zn-doped B-
TCP and then mixed it in an alumina mortar with appropriate amounts of commercially available
pure B-TCP to obtain the desired amount of Zn-doping. 10 mol% Zn-doped B-TCP was
synthesized by mixing a suspension of calcium hydroxide (synthesized in-house by forming
calcium oxide from calcium carbonate by heating the latter at 1000°C for 3 h and then dissolving
the former in water) with zinc nitrate hexahydrate and a phosphoric acid solutions.”! The
precipitates were then filtered and calcined at 850°C for 1 h.*! The authors also reported the
presence of a secondary phase of CaZn>(PO4); while attempting to synthesize TCP containing
zinc more than 12 mol%. After mixing 10 mol% Zn-doped B-TCP with pure B-TCP, various samples
were reported to be synthesized, such as containing 0.28, 2.56, 5.0, 7.47, and 10.5% Zn.*!

We realized that the lower end of Zn-doping range was not fully explored. Therefore, in
this study we tried to explore the range of Zn-doping from pure B-TCP to 1.0 wt% Zn-doped p-
TCP. We synthesized the powders by using an aqueous chemical route which used
Ca(NO;3),-4H,0, NHH,PO4, and Zn(NO3),-6H,0 as the starting chemicals. Precursor powders
were pressed into pellets and then calcined at 1000°C for 6 h and characterized by using
analytical techniques. The pellets were then tested for their cell viability and ALP activity using
rat osteoblast cells.
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EXPERIMENTAL PROCEDURE

In this work, we studied the effect of varying concentrations of Zn in B-TCP to determine
the osteoblast response as a function of Zn concentration. The samples prepared were pure B-
TCP, and 600 ppm, 4100 ppm, and 10100 ppm Zn-doped B-TCP. For synthesizing these Zn-
containing calcium phosphates, Ca(NOs),-4H,0, NHsH,PO4, and Zn(NOj;)6H,O (Reagent-
grade, Fisher Chemicals, Fairlawn, NJ) were used. The (Ca+Zn)/P molar ratio was maintained at
1.503 for all the samples and two aqueous solutions were prepared; one containing a phosphate
salt dissolved in deionized water and the second containing Ca and Zn salts dissolved in water.
For synthesizing 0/ 600/ 4100/ 10100 ppm Zn-doped B-TCP, the first solution contained 0.1951
moles NH H,POs, a constant amount for all concentrations. The second solution was prepared by
dissolving 0.2932/ 0.2924/ 0.2910/ 0.2877 moles of Ca(NO;),-4H,0 and 0 / 0.0008/ 0.0022/
0.0055 moles of Zn(NOj3),-6H,0, respectively, in 600 mL water. The latter solution containing
Ca* and Zn®' ions was rapidly added to the phosphate solution. Within few minutes after
addition, the solution became turbid and pH was recorded as 4+0.1. To make this solution clear,
few drops of conc. HNO; (15.69 M, Fisher) were added and the pH of this solution dropped to
3+0.1. This clear solution was then stirred at 37+1°C for 2 h followed by rapid addition of 50 mL
NH,OH (29% NH;, Merck) causing instantaneous precipitation and a resultant opaque solution
with a pH of 9.240.2 at 37°C. This suspension was stirred for 1 h and filtered with paper. The
precipitates were washed with 4 L water, followed by drying at 90°C overnight. The dried
powders were ground and then pressed into pellets using a 1.25 cm diameter steel die and a
pressure of 4,500 kg. Thus formed pellets were calcined at 1000°C for 6 hours in air.

The precursor and calcined samples were characterized by using an X-ray diffractometer
(XRD; XDS 2000, Scintag Corp., Sunnyvale, CA), operated at 40 kV and 30 mA with
monochromated Cu K, radiation. X-ray data were collected at 26 values from 25° to 40° at a rate
of 0.03°/minute. Fourier-transformed infrared spectroscopy (FTIR; Nicolet 550, Thermo-Nicolet,
Woburn, MA) analysis was performed on the precursor and calcined samples. The size and shape
of the precursor particles were evaluated by transmission electron microscope (TEM, H7600T,
Hitachi Corp., Tokyo, Japan) at 120kV. Surface morphology of the sputter-coated (w/Pt)
calcined pellets was evaluated with a scanning electron microscope (FE-SEM; S-4700, Hitachi
Corp., Tokyo, Japan) which was used in the secondary electron (SE) mode with an acceleration
voltage of 5 kV. Chemical analyses of powder (both precursor and calcined) samples were
performed by ICP-AES (Model 61E, Thermo Electron, Madison, WI). For the ICP analyses, 50
mg portions of powder samples were dissolved in 5 mL of concentrated HNO; solution. Surface
roughness analyses on calcined pellets were performed with a NT-2000 Non-contacting surface
profilometer (Wyko, Tuscon AZ) with a 0.164 x 0.215 mm field of view and a magnification of
25X. In profilometry, R, was the average roughness and R, was the difference between of the
highest peak and the lowest valley in the field of view. The bulk density measurements of
calcined pellets were performed using He-pycnometer (AccuPyc 1330, Micromeritics, Norcross,
GA). For each sample, the number of purges and runs was 5 and the averages were reported
along with the standard deviation. Thermogravimetric analyses (TGA, Model 851e, Meitler-
Toledo, Columbus, OH) were performed in an air atmosphere only on the starting chemicals of
our powder synthesis route over the range of 30°~1000°C, with a scan rate of 5°C/min.

7F2 rat osteoblast cells (CRL-12557, American Type Culture Collection, Rockville, MD)
were grown on 75 em? culture flasks at 37°C and 5% CO, in alpha minimum essential medium
(0-MEM) with 2 mM 1-glutamine and 1 mM sodium pyruvate, without ribonucleosides and
deoxyribonucleosides, augmented by 10% FBS. The culture medium was changed every other
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day until the cells reached a confluence of 90-95%, as determined visually with an inverted
microscope. The cells were passaged using trypsin (2.5 g/L)/ EDTA (25mM) solution (Sigma-
Aldrich Corp., St. Louis, MO, USA). The obtained cells were then seeded at a concentration of
3500 cell/well on 0.14 cm® cylindrical samples for various assays. Cell viability and alkaline
phosphatase activity were measured after 72 hours. For statistics, the sample size (n) was
selected as 16 for all the in vitro cell culture tests.

The cell viability assessment was performed using Live/Dead® Viability/Cytotoxicity
Kit (L-3224, Molecular Probes, Eugene, OR). The fluorescence values at 494/517 nm for live
cells and 528/617 nm for dead cells were recorded. The alkaline phosphatase (ALP) activity was
determined using the ALP concentration and the cell extracted protein concentration. The ALP
concentration was calculated using Enzymatic Assay of Phosphatase Alkaline Kit (EC 3.1.3.1,
Sigma-Aldrich Corp., St. Louis, MO, USA). A working reagent was prepared by first mixing 2.7
ml of Reagent A (1.0 M Diethanolamine Buffer with 0.50 mM Magnesium Chloride) with 0.30
ml of Reagent B (150 mM p-Nitrophenyl Phosphate Solution (pNPP)) and then mixing the
mixture with 0.10 ml of cell-containing media. 100 pl of this solution was added to each well
and thoroughly mixed and incubated at 37°C for 30 minutes. Following incubation, the
absorbance was recorded at 405 nm with the spectrophotometer at room temperature. The
standard curve was obtained by plotting the absorbance measured at 405 nm for certain
concentration against the concentration in pg/ml. ALP concentration of each sample was then
determined using this standard curve and is expressend as ug-pNP/ml. The cell extracted protein
concentration was determined in a two-step procedure, first the protein was extracted using M-
PER™ Mammalian Protein Extraction reagent and then this extracted protein was measured
using BCA™ Protein Assay Kit. The cell samples were lysed by adding 200 pl of M-PER™
Reagent to each well plate and then shaking for 5 minutes. Lysate was collected and transferred
to microcentrifuge tubes, followed by centrifuging at 4000g for 10 minutes to pellet the cell
debris. Supernatant was transferred to clean tubes for analyzing the protein concentration. To
measure the protein amount, a working reagent (WR) was prepared by mixing 50 parts of
BCAT™ Reagent A with 1 part of BCA™ Reagent B (50:1, Reagent A:B). 200 pl of the above
mentioned WR was added to each well and thoroughly mixed. Following mixing, the well plate
was covered and incubated at 37°C for 30 minutes. The absorbance at 562 nm was measured
with the spectrophotometer at room temperature. A standard curve was prepared by plotting the
average blank-corrected 562 nm measurement for each BSA standard versus its concentration in
pg/ml. Cell extracted protein concentration was then determined by using this standard curve and
is expressed as pg/ml. The ALP activity was then calculated as follows; ALP Activity = [(ug
pNP)/139] / pg(cell extracted protein) = pmoles pNPP/ pg cell protein. Osteoblast attachment
on calcined pellets was examined using SEM (FESEM: S-4700, Hitachi Corp.. Tokyo, Japan).
Prior to the SEM investigations, cells were fixed by using 3.5% glutaraldehyde. Osteoblasts were
dehydrated through sequential washings in 50%, 70%, 95% ethanol solutions and 2 times in
100% ethanol. Samples were then critical point-dried according to the previously published
techniques. Samples were sputter-coated with a thin layer of platinum prior to the electron
microscope observations performed at 5 kV.

RESULTS AND DISCUSSION
The ICP-AES results (Table 1) showed the Ca, P and Zn levels achieved in the powders

after calcinations. Henceforth, the samples will be referred to as Zn-0, Zn-600, Zn-4100, Zn-
10100 for 0, 600, 4100, 10100 ppm levels of Zn in B-TCP. It must be noted that there was an
increase in Zn levels in going from precursors to 1000°C-calcined samples (results not shown),
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Table I 1CP-AES results of the calcined g "
samples at [1000°C for 6 h § - f
Sample” Ca(%) | P(%) | Ca/P Zn (ppm) "
Zn-0 4121 20.71 1.523 0 J
Zn-600  [42.85 [22.14 | 1.496 | 600 &
Zn-4100 36.46 18.94 1.488 4100 mi
Zn-10100 | 38.92 | 20.16 1.493 10100
* Samples containing ppm-level Zn in p-TCP " ,
P
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Fig.1b Fig. lc
Fig. 1 (a) TGA trace, (b, ¢) TEM micrographs of the precursor powders

which can be attributed to the different forms (i.c., surface/bulk) of Zn present in both sets of
samples. Zinc will be more tightly incorporated into the structure after calcination as compared
to the surface-adsorbed Zn that might be present in the precursor powders. A total weight loss of
around 6% was observed in going from room temperature (RT) to 1000°C (Fig. 1a). The weight
loss occurred in two parts, first comprised of a gradual loss from RT to 700°C which meant a
loss of some surface adsorbed water, remaining nitrate and/or ammonium ions which were not
fully removed during washing. The conversion of hydrogen phosphate ions (HPO,”) into P,0;*
occurs at the same time, with the evolution of water vapor. Carbonate ions that were present in
the FTIR spectra of the precursor material and absent in the calcined samples, constituted the
second part. These carbonate jons were removed from the system at around 720°C.

The TEM micrographs (of Figures 1b and 1c) of the precursor material showed that the
material was nanocrystalline in nature and consisted of rod-shaped crystals of about 50 nm-
length and 15 nm-thickness. Due to the high concentration of the powders in solution, these
crystals tended to form agglomerates. These agglomerates were believed to be soft agglomerates
as these were later on pressed to form a pellet. Althou%h the sample preparation routes of this
study differed significantly from that of Bouyer et al.,” the particle shape and size was quite
similar.

XRD patterns of the pure and Zn-doped precursor powders and sintered samples were
shown in Figure 2a. The nanorods or nanoneedles of the precursor powder yielded an XRD
pattern similar to that of poorly-crystallized apatitic calcium phosphate. Sintered samples (both
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Fig. 2 (a) XRD trace, and (b) FTIR trace of the precursor powder (1), sintered sample |
(2), and Fluka TCP powder, (c) pycnometric results (bulk densities) of sintered pellets

pure and Zn-doped) resulted in the characteristic B-TCP XRD patterns. The FTIR spectra (Fig.
2b) confirmed the X-ray analyses, where a band at 3571 cm’* was observed (see inset in Fig. 2b)
substantiating the presence of apatitic phase in the precursors. The OH band in the sintered
samples was absent, indicating the conversion to B-TCP. The characteristic IR spectrum for the
commercial B-TCP powders (i... Fluka, Inc.) was added as trace 3 to Fig. 2b. The IR bands of
trace 2 and trace 3 of this chart match closely. The precursors after pelletization and calcination
resulted in highly dense pellets, the bulk density values reported in Figure 2c. The bulk density
of B-TCP is 3.15 gm/cc, which confirms the attainment of more than 95% density in Zn-doped B-
TCP. The maximum densification was observed in the sample of Zn-4100. Interestingly, this
sample (Zn-4100) exhibited the lowest average surface roughness among all the samples.
Average surface roughness and highest-to-lowest peak values are reported in Table 2, which
showed the lowest values for Zn-4100, thus the sample with the smoothest surface. This etfect
was quite evident from the SEM micrographs of sintered pellets (shown in Figure 3), where a
decrease in grain size was observed when Zn levels were either increased or decreased from
4100 ppm. The grain sizes were ranging from 350 nm to 2 um for Zn-4100 and ranged from a
100 nm to < 1pm for the rest of Zn-dopant levels. This grain growth as a function of substitution
of divalent ions into B-TCP was also observed by Yoshida et al® They reported an increase in
the grain size until 11.5 mol% Mg®" ion substitution and observed a decrease in the grain size
thereafter. This case resembles our study in which instead of Mg we used Zn®* and that the
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maximum grain growth was observed at 4100 ppm Zn-doped B-TCP samples, with a slight
decrease in grain sizes thereafter,

In B-TCP, Ca(4) and Ca(5) sites are the most suitable sites for smaller cation
substitution.*” The site Ca(4) was confirmed to be very different from the other four calcinm sites
with a lower occupancy factor, higher isotropic thermal parameter, 1 small bond valence sum
{BVS), small co-ordination number (CN) and longer Ca-O distances."® Ca( 5) site is co-ordinated
with six oxygen atoms and has the highest BVS of 2.7 as compared to the others.*® The other
cation sites do not offer a suitable geometry for small cations, Theoretical evidence has proved
that when Zn"" ion substitution took place, a decrease in bond lengths, an increase in chemical
stability and a deformation of the crystal structure of hydroxyapatite occurred.”” A similar effect
was also observed when Mg ions were substituted in HA.Y" In Mg-doped B-TCP, it was
observed that the Mg(4)=++0(9) bond was shortened in comparison to the Ca(4)+=+0(9) bond in
pure B-TCP.*** The OsesMg(5)+++O bonds approached towards 90° with increasing Mg content
confirmed the trend towards the more ideal octahedral configuration.™** Moreover, due to the
similarity in the lattice constants of Zn and Mg, a similar preferential distribution in different
cationic sites is expected from both the theoretical and experimental studies.® Therefore, zinc
substitution in B-TCP will lead to shortening of the bond lengths and an increase in chemical

bility.

Mouse osteoblast cells (7F2) cultured on calcined pellets exhibited differences in terms
of the number of attached cells and alkaline phosphatase activity. as presented in Figures 4a and
4b. The initial number of cells seeded onto the calcined pellets was 3500 cells/pellet and after 3
days the number of live cells on Zn-0 sample increased to about 15000 cells. All the other Zn-
doped pellets had greater number of live cells, with the highest being at 4100 ppm Zn-dopant
level. Interestingly. Zn had a cytotoxic effect and it was seen that the number of cell death was

.

ig. 3¢ ¢ 3d
Fig. 3 SEM micrographs of (@) pure B-TCP, (b) Zn-600, (c) Zn-4100, and () Zn-10100 pellet
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maximum on the pellets which contained the highest amount of Zn-level in this study, that was,
7n-10100. The % dead cells were calculated for all the samples, and a descending trend was
observed with Zn-10100 sample showing the highest % dead cells at around 21% and the least
was observed for pure-TCP sample (4%). Therefore, zinc stimulated the growth of osteoblasts
and we observed that the osteoblasts multiplied by ten-fold within 3 days in Zn-doped samples,
whereas the multiplication rate was only 5-fold in Zn-0 (pure -TCP). The osteoblast cells require
the presence of certain ions and proteins (i.e., nutrients) in the media for growth and
propagation.49 We may speculate that at the very beginning of the cell culture tests, the amount
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Fig. 4¢ : Fig, 4f
Fig. 4  (a) Cell viability (live/dead), (b) ALP activity for Zn-0, Zn-600, Zn-4100

and Zn-10100; SEM micrographs of osteoblasts on the surface of (c) pure f-TCP
(d) Zn-600, (€) Zn-4100, and (f) Zn-10100 pellet
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of ions in the media was sufficient which helped the cells to multiply. Since the media was not
replenished during the 3- day culture tests, cell death was observed due to a decreased
concentration of the essential ions and proteins in the media. The alkaline phosphatase activity
was also found to yield the highest values for Zn-level of 4100 ppm in the sintered pellets. A
decrease in both the ALP activity and live cells was observed with an increase or decrease in Zn-
levels from 4100 ppm. Osteoblast attachment and proliferation on the surfaces of sintered pellets
was monitored by FESEM, and given in Figures 4c through 4f. Osteoblasts were attached to the
surfaces of all the samples tested here, however, the osteoblast proliferation showed a significant
behavior. Cells were able to easily differentiate between the chemical compositions of the
sintered pellets. In Zn-0 pellet (pure B-TCP), the osteoblast cell was observed to be closely
associated with the pellet, as they formed a translucent layer through which the grains were still
visible (Fig. 4c). In Zn-doped pellets, osteoblasts appeared to be more elongated with numerous
filopodia extending onto the pellet surfaces. The cells were also slightly raised above the surface
in these samples as compared to the flattened morphology observed for the pure B-TCP pellets.
Briefly, the extent of cell spreading was the highest in Zn-0 (pure B-TCP) pellets.
Factors like surface roughness and composition of a surface influence the material-cell
interactions.’" ¥ Many researchers claimed that on smooth surfaces, better cell adhesion and
spreading should be observed.” ** However, there are discrepancies in literature and some
studies demonstrated that greatest osteoblast attachment and proliferation was observed on
rougher surfaces with more irregular topographies.® ** An SEM study performed by Baxter et
al* to evaluate the material-cell interaction concluded that the spreading of the osteoblasts was
highest on Thermanox plastic as compared to that of HA substrates, Interestingly, in another
study, it was shown that proliferation numbers and alkaline phosphatase (ALP) activities of the
osteoblasts on the composite calcium phosphate coatings were improved by approximately 30-
40% when compared to Thermanox control, and were comparable to the pure HA coating.®
These suggest that the in vitro observation of a high cell spreading would not necessarily mean
better in vivo bone integration for that material.* In our study, we observed a mixed response in
terms of osteoblast spreading and activity. The best spreading was observed on pure B-TCP
(roughest surface in this study) while the best osteoblast activity was observed on a Zn-doped
pellet with the smoothest surface, that is, at a Zn-dopant level of 4100 ppm. Higher levels of Zn-
doping apparently led to the onset of cytotoxic effects (Fig. 4a), but still the ALP activity was
higher (Fig. 4b) and the surfaces of those pellets were coarser than those of pure B-TCP,

In consequence, these results suggested that material composition, cell viability and ALP
activity were the factors which are more important than the surface roughness and extent of cell
spreading alone, in evaluating the interaction of osteoblast cells with the biomaterial under
question. Evidence presented here largely added to the previous work performed by Ito ef al., 2
and partially satisfied our quest for the determination of the appropriate Zn dopant level in [3-
TCP to improve the osteoblast response.

CONCLUSIONS

A wet chemical method was developed and successfully used for the synthesis of B-TCP
and Zn-doped B-TCP (0, 600, 4100 and 10100 ppm Zn), after carefully and extensively checking
the Zn-dopant levels achieved in all the resultant samples by using an accurate chemical analysis
technique like ICP, for the first time. Zn-doping, as well as the use of precursor powders
consisting of nanorods or nanoneedles, significantly improved the densification of B-TCP at a
relatively low temperature of 1000°C. Zn-doping caused a slight grain growth, in comparison to
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pure B-TCP, up to a certain dopant level, which then decreased or leveled off with further
increase in the dopant level. The highest number of live rat osteoblast cells was observed for the
4100 ppm Zn-doped B-TCP pellet. This proved that even the ppm level presence of Zn (solely
originating from the sintered pellet samples themselves) in a cell culture medium has an
undeniable effect in stimulating the multiplication and proliferation of osteoblasts. The highest
alkaline phosphatase activity was again encountered for the same Zn-4100 sample. Doping of
sintered B-TCP porous blocks, sponges or granules, which are already in clinical use as bone
substitutes, with Zn over the range of 3000 to 4000 ppm may cause a significant increase in the
osteoblast response and proliferation on such samples. This has been the most critical and
technologically important conclusion of this study.
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