Refereed Journal Articles              Prof. Dr. A. Cuneyt Tas

 

-------------------------------------------------------------------------------------------------------

The publications on this site are being made available to the academic community for use in teaching and research. All copyrights remain intact.

-------------------------------------------------------------------------------------------------------

 

1. A. C. TAS, “Transformation of Brushite (CaHPO4∙2H2O) to Whitlockite (Ca9Mg(HPO4)(PO4)6) or Other CaPs in Physiologically-relevant Solutions,” Journal of The American Ceramic Society, 99(4), 1200-1206 (2016).    PDF

   45 Citations

 

2. A. C. TAS, “Aragonite Coating Solutions (ACS) based on Artificial Seawater,” Applied Surface Science, 330, 262-269 (2015).    PDF  15 Citations

 

3. J. H. Lee, A. S. Madden, W. M. Kriven, and A. C. TAS, “Synthetic Aragonite (CaCO3) as a Potential Additive in Calcium Phosphate Cements: Evaluation in Tris-free SBF at 37°C,” Journal of The American Ceramic Society, 97(10), 3052-3061 (2014).    PDF     15 Citations

 

4. N. T. Weissmueller, H. A. Schiffter, A. J. Pollard, and A. C. TAS, “Molten Salt Synthesis of Potassium-containing Hydroxyapatite Microparticles used as Protein Substrate,” Materials Letters, 128, 421-424 (2014).   PDF     5 Citations

 

5. A. C. TAS, “Submicron Spheres of Amorphous Calcium Phosphate forming in a Stirred SBF Solution at 55°C,” Journal of Non-Crystalline Solids, 400, 27-32 (2014).    PDF       23 Citations

6. A. C. TAS, “The Use of Physiological Solutions or Media in Calcium Phosphate Synthesis and Processing,” Acta Biomaterialia, 10(5), 1771-1792 (2014).     PDF      106 Citations

7. A. C. TAS, “Grade-1 Titanium soaked in a DMEM (Dulbecco’s Modified Eagle Medium) Solution at 37°C,” Materials Science and Engineering C: Materials for Biological Applications, 36, 84-94 (2014).      PDF     11 Citations

8. M. V. Pachuilo, F. Stefani, L. L. Raja, R. D. Bengtson, G. A. Henkelman, A. C. TAS, W. M. Kriven, and K. S. Suraj, “Development of a Gas-fed Plasma Source for Pulsed High-Density Plasma/Material Interaction Studies,” IEEE Transactions on Plasma Science, 42(10), 3245-3252 (2014).    PDF    7 Citations

9. A. C. TAS, “X-ray-amorphous Calcium Phosphate (ACP) Synthesis in a Simple Biomineralization Medium,” Journal of Materials Chemistry B; Materials for Biology and Medicine, 1(35), 4511-4520 (2013).     PDF    27  Citations

10. P. R. Larson, A. S. Madden, and A. C. TAS, “Non-stirred Synthesis of Na- and Mg-doped, Carbonated Apatitic Calcium Phosphate,” Ceramics International, 39(2), 1485-1493 (2013).     PDF      13 Citations

11. C. Kim, M. R. Kendall, M. A. Miller, C. L. Long, P. R. Larson, M. B. Humphrey, A. S. Madden, and A. C. TAS, “Comparison of Titanium Soaked in 5 M NaOH or 5 M KOH Solutions,” Materials Science and Engineering C: Materials for Biological Applications, 33(1), 327-339 (2013).     PDF     78  Citations

 

12. M. A. Miller, M. R. Kendall, M. K. Jain, P. R. Larson, A. S. Madden, and A. C. TAS, “Testing of Brushite (CaHPO4×2H2O) in Synthetic Biomineralization Solutions and In Situ Crystallization of Brushite Micro-Granules,” Journal of The American Ceramic Society, 95(7), 2178-2188 (2012).     PDF       46  Citations

  

13. A. C. TAS, “Calcium Metal to Synthesize Amorphous or Cryptocrystalline Calcium Phosphates,” Materials Science and Engineering C: Materials for Biological Applications, 32(5), 1097-1106 (2012).     PDF      21 Citations

14. A. C. TAS, “Granules of Brushite and Octacalcium Phosphate from Marble,” Journal of The American Ceramic Society, 94(11), 3722-3726 (2011).     PDF    26 Citations

15. A. C. TAS, “Comment on Self-hardening Microspheres of Calcium Phosphate Cement with Collagen for Drug Delivery and Tissue Engineering in Bone Repair,” Journal of The American Ceramic Society, 94(9), 3149 (2011).     PDF       3 SCI Citations

16. G. Kurtulus and A. C. TAS, “Transformations of Neat and Heated Struvite (MgNH4PO4×6H2O),” Materials Letters, 65(19-20), 2883-2886 (2011).    PDF       61 Citations

17. N. Temizel, G. Girisken, and A. C. TAS, “Accelerated Transformation of Brushite to Octacalcium Phosphate in New Biomineralization Media between 36.5° and 80°C,” Materials Science and Engineering C: Materials for Biological Applications, 31(5), 1136-1143 (2011).     PDF       47 Citations

18. A. Pasinli, M. Yuksel, E. Celik, S. Sener, and A. C. TAS, “A New Approach in Biomimetic Synthesis of Calcium Phosphate Coatings using Lactic Acid-Na Lactate Buffered Body Fluid Solution,” Acta Biomaterialia, 6(6), 2282-2288 (2010).     PDF       69 Citations

19. S. Mandel and A. C. TAS, “Brushite (CaHPO4×2H2O) to Octacalcium Phosphate (Ca8(HPO4)2(PO4)4×5H2O) Transformation in DMEM (Dulbecco’s Modified Eagle Medium) Solutions at 36.5°C,” Materials Science and Engineering C: Materials for Biological Applications, 30(2), 245-254 (2010).     PDF       254 Citations

20. A. C. TAS, “Monetite (CaHPO4) Synthesis in Ethanol at Room Temperature,” Journal of The American Ceramic Society, 92(12), 2907-2912 (2009).     PDF       97 Citations

21.  A. C. TAS, “Monodisperse CaCO3 Microtablets Forming at 70°C in Prerefrigerated CaCl2-Gelatin-Urea Solutions,” International Journal of Applied Ceramic Technology, 6(1), 53-59 (2009).     PDF       40 Citations

22.  A. C. TAS, “Preparation of Porous Apatite Granules from Calcium Phosphate Cement,” Journal of Materials Science: Materials in Medicine, 19(5), 2231-2239 (2008).     PDF       83 Citations

23. S. Jalota, S. B. Bhaduri, and A. C. TAS, “Using a Synthetic Body Fluid (SBF) Solution of 27 mM HCO3- to Make Bone Substitutes more Osteointegrative,” Materials Science and Engineering C: Materials for Biological Applications, 28(1), 129-140 (2008).     PDF       138 Citations

24. A. C. TAS, “Use of Vaterite and Calcite in forming Calcium Phosphate Cement Scaffolds,” Ceramic Engineering and Science Proceedings, 28(9): 135-150  (2008).   PDF      21 Citations

 

25.  A. C. TAS, “Formation of Calcium Phosphate Whiskers in Hydrogen Peroxide (H2O2) Solutions at 90ºC,” Journal of The American Ceramic Society, 90(8), 2358-2362 (2007).     PDF       33 Citations

26. T. R. Desai, S. B. Bhaduri, and A. C. TAS, “A Self-setting Monetite (CaHPO4) Cement for Skeletal Repair,” Ceramic Engineering and Science Proceedings, 27(6): 61-69  (2007).     PDF      46 Citations

27. S. Jalota, S. Bhaduri, S. B. Bhaduri, and A. C. TAS, “A Protocol to Develop Crack-Free Biomimetic Coatings on Ti6Al4V Substrates,” Journal of Materials Research, 22(6), 1593-1600 (2007).     PDF       30 Citations

28.  A. C. TAS, “Porous, Biphasic CaCO3-Calcium Phosphate Biomedical Cement Scaffolds from Calcite (CaCO3) Powder,” International Journal of Applied Ceramic Technology (USA), 4(2), 152-163 (2007).     PDF       43  Citations

29. S. Jalota, S. B. Bhaduri, and A. C. TAS, “Osteoblast Proliferation on Neat and Apatite-like Calcium Phosphate-coated Titanium Foam Scaffolds,” Materials Science and Engineering C: Materials for Biological Applications, 27(3), 432-440 (2007).     PDF       82 Citations

30.  A. C. TAS, S. B. Bhaduri, and S. Jalota, “Preparation of Zinc-doped Beta-Tricalcium Phosphate (Beta-Ca3(PO4)2) Bioceramics,” Materials Science and Engineering C: Materials for Biological Applications, 27(3), 394-401 (2007).     PDF       79 Citations

31. S. Jalota, S. B. Bhaduri, and A. C. TAS, “A New Rhenanite (beta-NaCaPO4) and Hydroxyapatite Biphasic Biomaterial for Skeletal Repair,” Journal of Biomedical Materials Research, Part B: Applied Biomaterials, 80B, 304-316 (2007).     PDF       67 Citations

32. S. Jalota, S. B. Bhaduri, and A. C. TAS, “Effect of Carbonate Content and Buffer type on Calcium Phosphate Formation in SBF Solutions,” Journal of Materials Science: Materials in Medicine, 17 (8), 697-707 (2006).     PDF       178 Citations

33. S. Jalota, S. B. Bhaduri, and A. C. TAS, “In Vitro Testing of Calcium Phosphate (HA, TCP and biphasic HA-TCP) Whiskers,” Journal of Biomedical Materials Research, 78A, 481-490 (2006).     PDF       111 Citations

34.  A. C. TAS, “Electroless Deposition of Brushite (CaHPO4×2H2O) Crystals on Ti-6Al-4V at Room Temperature,” Zeitschrift fuer Metallkuende (International Journal of Materials Research), 97(5) 639-644 (2006).     PDF       15 Citations

35. S. Jalota, A. C. TAS, and S. B. Bhaduri, “Synthesis of HA-seeded TTCP (Ca4(PO4)2O) Powders at 1230°C from Ca(CH3COO)2.H2O and NH4H2PO4,” Journal of The American Ceramic Society, 88(12) 3353-3360 (2005).     PDF       62 Citations

36.  A. C. TAS and F. Aldinger, "Formation of Apatitic Calcium Phosphates in a Na-K-Phosphate Solution of pH 7.4," Journal of Materials Science: Materials in Medicine, 16 (2), 167-174 (2005).     PDF       47 Citations

37.  A. C. TAS and S. B. Bhaduri, “Chemical Processing of CaHPO4×2H2O: Its Conversion to Hydroxyapatite,” Journal of The American Ceramic Society, 87 (12), 2195-2200 (2004).     PDF       118 Citations

38.  A. C. TAS and S. B. Bhaduri, “Rapid Coating of Ti6Al4V at Room Temperature with a Calcium Phosphate Solution Similar to 10x Simulated Body Fluid,” Journal of Materials Research, 19 (9), 2742-2749 (2004).     PDF       284 Citations

39.  A. C. TAS, “Participation of Calcium Phosphate Bone Substitutes in the Bone Remodeling Process: Influence of Materials Chemistry and Porosity,” Key Engineering Materials, 264-268, 1969-1972 (2004).     PDF       10  Citations

40.  A. C. TAS, “Preparation of Porous Bioceramics by a Simple PVA-Processing Route,” Key Engineering Materials, 264-268, 2079-2082 (2004).     PDF       13 Citations

41. S. Jalota, A. C. TAS, and S. B. Bhaduri, “Microwave-Assisted Synthesis of Calcium Phosphate Nanowhiskers,” Journal of Materials Research, 19 (6), 1876-1881 (2004).     PDF    90 Citations

42. P. J. Majewski, M. Rozumek, A. C. TAS, and F. Aldinger, “Processing of (La,Sr)(Ga,Mg)O3 Solid Electrolyte,” J. Electroceramics, 8 (1), 65-73 (2002).     PDF       90 Citations

43.  A. C. TAS, P. J. Majewski, and F. Aldinger, "Chemical Synthesis of Crystalline, Pure or Mn-Doped ZnGa2O4 Powders at 90°C," Journal of Materials Research, 17 (6), 1425-1433 (2002).     PDF       30 Citations

44.  A. C. TAS, P. J. Majewski, and F. Aldinger, "Synthesis of Gallium Hydroxide Crystals in Aqueous Solutions with or without Urea and Their Calcination Behavior," Journal of The American Ceramic Society, 85 (6), 1421-1429 (2002).     PDF       195 Citations

45.  A. C. TAS, P. J. Majewski, and F. Aldinger, "Preparation of Sr- and Zn-doped LaGaO3 Powders via Precipitation in the Presence of Urea and/or Enzyme Urease," Journal of The American Ceramic Society, 85 (6), 1414-1420 (2002).     PDF       28 Citations

46.  A. C. TAS, "X-Ray Diffraction Data for Flux-Grown Calcium Hydroxyapatite Whiskers," Powder Diffraction (USA), 16 (2), 102-106 (2001).     PDF       32 Citations

47. D. Bayraktar and A.C. TAS, "Formation of Hydroxyapatite Precursors at 37°C in Urea- and Enzyme Urease-containing Body Fluids," Journal of Materials Science Letters, 20 (5), 401-403 (2001).     PDF       34 Citations

48. A. C. TAS, "Molten Salt Synthesis of Calcium Hydroxyapatite Whiskers," Journal of The American Ceramic Society, 84 (2), 295-300 (2001).     PDF       233 Citations

49.  A. C. TAS, P. J. Majewski, and F. Aldinger, "Chemical Preparation of Pure and Strontium- and/or Magnesium-Doped Lanthanum Gallate Powders," Journal of The American Ceramic Society, 83 (12), 2954-2960 (2000).     PDF       256 Citations

50.  A. C. TAS, "Combustion Synthesis of Calcium Phosphate Bioceramic Powders," Journal of The European Ceramic Society, 20 (14-15) 2389-2394 (2000).     PDF       221 Citations

51. N. O. Engin and A. C. TAS, ”Preparation of Porous Ca10(PO4)6(OH)2 and Ca3(PO4)2 Bioceramics,” Journal of The American Ceramic Society, 83 (7), 1581-1584 (2000).     PDF       121 Citations

52. I. E. Gonenli and A. C. TAS, "Chemical Preparation of Aluminum Borate Whiskers," Powder Diffraction (ICDD, USA), 15 (2), 104-107 (2000).     PDF       17 Citations

53. D. Bayraktar and A. C. TAS, "Biomimetic Preparation of HA Powders at 37°C in Urea- and Enzyme Urease-containing Synthetic Body Fluids," Turkish Journal of Medical Sciences, 30 (3), 235-245 (2000).     PDF       16 Citations

54.  A. C. TAS, "Synthesis of Biomimetic Ca-Hydroxyapatite Powders at 37°C in Synthetic Body Fluids," Biomaterials,21 (14), 1429-1438 (2000).     PDF       853 Citations

55. B. Mavis and A. C. TAS, "Dip-Coating of Calcium Hydroxyapatite on Ti-6Al-4V Substrates," Journal of The American Ceramic Society, 83 (4), 989-991 (2000).     PDF       208 Citations

56. E.E. Oren and A. C. TAS, ”Hydrothermal Synthesis of Dy-Doped BaTiO3 Powders,” Metallurgical and Materials Transactions, 30B, 1089-1093 (1999).     PDF       13 Citations

57.  D. Bayraktar and A. C. TAS, "Chemical Preparation of Carbonated Calcium Hydroxyapatite Powders at 37°C in Urea-containing Synthetic Body Fluids," Journal of The European Ceramic Society, 19, 2573-2579 (1999).     PDF       199 Citations

58. N. O. Engin and A. C. TAS, "Manufacture of Macroporous Calcium Hydroxyapatite Bioceramics," Journal of The European Ceramic Society, 19, 2569-2572 (1999).     PDF       293 Citations

59. I. E. Gonenli and A. C. TAS, "Chemical Synthesis of Pure and Gd-doped CaZrO3 Powders," Journal of The European Ceramic Society, 19, 2563-2567 (1999).     PDF       65 Citations

60. A. C. TAS, "Preparation of Lead Zirconate Titanate (Pb(Zr0.52Ti0.48)O3) by Homogeneous Precipitation and Calcination," Journal of The American Ceramic Society, 82, 1582-1584 (1999).     PDF       38 Citations

61. A. C. TAS, ”Chemical Preparation of the Binary Compounds in the Calcia-Alumina System by Self-Propagating Combustion Synthesis,” Journal of The American Ceramic Society, 81, 2853-2863 (1998).     PDF       172 Citations

62.  N. Kivrak and A. C. TAS, ”Synthesis of Calcium Hydroxyapatite-Tricalcium Phosphate (HA-TCP) Composite Bioceramic Powders and Their Sintering Behavior,” Journal of The American Ceramic Society, 81, 2245-2252 (1998).     PDF       363 Citations

63. E.E. Oren, E. Taspinar and A. C. TAS, ”Chemical Preparation of Lead Zirconate (PbZrO3) Powders by Homogeneous Precipitation and Calcination,” Journal of The American Ceramic Society, 80, 2714-2716 (1997).     PDF       49 Citations

64. E. Taspinar and A. C. TAS, ”Low-Temperature Chemical Synthesis of Lanthanum Monoaluminate (LaAlO3),” Journal of The American Ceramic Society, 80, 133-141 (1997).     PDF       96 Citations       Best citation

65. A. C. TAS, F. Korkusuz, M. Timucin and N. Akkas, ”An Investigation of the Chemical Synthesis and High-Temperature Sintering Behaviour of Calcium Hydroxyapatite (HA) and Tricalcium Phosphate (TCP) Bioceramics,” Journal of Materials Science: Materials in Medicine, 8, 91-96 (1997).     PDF       316  Citations

66. C. Basceri, A. C. TAS and M. Timucin, ”Characterization of New Solid Solution Phases in (Y,Ca)(Cr,Co)O3 System,” Powder Diffraction (ICDD, USA), 10 (1), 40-43 (1995).     PDF      1 Citations

67.  A. C. TAS and M. Akinc, ”Crystal Structures of the High-Temperature Forms of Ln2Si2O7 (Ln = La, Ce, Pr, Nd, Sm) Revisited,” Journal of The American Ceramic Society, 77, 2968-2970 (1994).     PDF       30 Citations

68.  A. C. TAS and M. Akinc, ”Phase Relations in the System Ce2O3-Al2O3 in Inert and Reducing Atmospheres,” Journal of The American Ceramic Society, 77, 2961-2967 (1994).     PDF       30 Citations

69. A. C. TAS and M. Akinc, ”Phase Relations in the System Ce2O3-Ce2Si2O7 in the Temperature Range 1150° to 1970°C in Reducing and Inert Atmospheres,” Journal of The American Ceramic Society, 77, 2953-2960 (1994).     PDF       53 Citations

70. A. C. TAS and M. Akinc, ”Phase Relations in the System Al2O3-Ce2Si2O7 in the  Temperature Range 900° to 1925°C in Inert Atmosphere,” Journal of The American Ceramic Society, 76, 1595-1601 (1993).     PDF       18  Citations

71.  A. C. TAS and M. Akinc, ”Cerium Oxygen Apatite (Ce4.67(SiO4)3O) X-Ray Diffraction Pattern Revisited,” Powder Diffraction (ICDD, USA), 7 (4), 219-222 (1992).     PDF       15 Citations

 

It is impossible for a man to learn what he thinks he already knows.”

Epictetus, 50-135 AD

----------------------------------------------------------------------------------

Time in academia can only be measured by dreams fulfilled, goals attained, quality moments, colleagues mentored, students formed, knowledge generated, knowledge shared, scholarly work, articles and book chapters written, classes taught, lectures given, proposed innovations, research completed, among others.